История строения атома кратко. Развитие представлений о строении атома. Опыт Резерфорда. Модель атома по Резерфорду. Постулаты Бора. Боровская теория атома водорода. Корпускулярно-волновые свойства микрочастиц

💖 Нравится? Поделись с друзьями ссылкой

Известный американский ученый, дважды лауреат Нобелевской премии Лайнус Полинг в своей книге «Общая химия» (М.: Мир, 1974) пишет, что «величайшую помощь всякому изучающему химию прежде всего окажет хорошее знание строения атома». Открытие частиц, составляющих атом, и исследование структуры атомов (а затем и молекул) - одна из наиболее интересных страниц истории науки. Знание электронного и ядерного строения атомов позволило провести исключительно полезную систематизацию химических факторов, что облегчило понимание и изучение химии.

Развитие представлений о сложном строении атома

Первые указания о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости и газы. Опыты выдающегося английского ученого М. Фарадея в тридцатых годах XIX в. навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.

Величины этих единичных зарядов электричества были определены в более поздних экспериментах по пропусканию электрического тока через газы (опыты с так называемыми катодными лучами). Было установлено, что катодные лучи - это поток отрицательно заряженных частиц, которые получили название электронов.

Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран.

Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской-Кюри открыть два новых радиоактивных элемента: полоний и радий. Последовавшее за этим установление природы и -лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899-1903 гг.), открытие ядер атомов диаметром нм, занимающих незначительную долю объема атома (Э. Резерфорд, 1909- 1911 гг.), определение заряда электрона (Р. Милликен, 1909-1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Франк, Г. Герц, 1912 г.), открытие того факта, что заряд ядра равен номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позволили предложить следующую модель строения атома:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Ядра атомов состоят из протонов и нейтронов (общее название - нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

4. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра (см. табл. 2.1).

Таблица 2.1. Свойства элементарных частиц, образующих атом

Различные виды, атомов имеют общее название - нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А - массовое число, Z - заряд ядра, равный числу протонов, и N - число нейтронов в ядре.

Эти параметры связаны между собой соотношениями:

Нуклиды с одинаковым Z, но различными А и N, называют изотопами.

Данная модель строения атома получила название планетарной модели Резерфорда. Она оказалась очень наглядной и полезной для объяснения многих экспериментальных данных. Но эта модель сразу же обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к нарушению равновесия между электроном и ядром. Электрон, постепенно теряя свою энергию, должен был бы двигаться вокруг ядра по спирали и в конце концов неизбежно упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было (все наблюдаемые явления говорят как раз об обратном), отсюда следовало, что модель Резерфорда в чем-то ошибочна.

Теория Бора.

В 1913 г. датский физик Н. Бор предложил свою теорию строения атома. При этом Бор не отбрасывал полностью старые представления о строении атома: как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца, однако в основу новой теории были положены два необычных предположения (постулата):

1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам. Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:

где m - масса электрона, n - номер орбиты, - постоянная Планка Дж с).

2. При движении по этим орбитам электрон не излучает и не поглощает энергии.

Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией в другое - с энергией что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия величина которой определяется соотношением

где v - частота излучения, .

Бор, используя уравнение (2.3), рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями. Такое же согласие теории и эксперимента было получено и для многих других атомов элементов, но было обнаружено также и то, что для сложных атомов теория Бора не давала удовлетворительных результатов. После Бора многие ученые пытались усовершенствовать его теорию, но все усовершенствования предлагались, исходя из тех же законов классической физики.

Квантовая теория строения атома.

В последующие годы некоторые положения теории Бора были переосмыслены, видоизменены, дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. На смену теории Бора пришла квантовая теория строения атома, которая учитывает волновые свойства электрона.

В основе современной теории строения атома лежат следующие основные положения:

1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна: подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся поток электронов проявляет волновые свойства, например характеризуется способностью к дифракции.

Длина волны электрона X и его скорость v связаны соотношением де Бройля:

где - масса электрона.

2. Для электрона невозможно одновременно точно измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение

где - неопределенность положения координаты, ли - погрешность измерения скорости.

3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части околоядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.

Эти положения составляют суть новой теории, описывающей движение микрочастиц, - квантовой механики. Наибольший вклад в развитие этой теории внесли француз Л. де Бройль, немец В. Гейзенберг, австриец Э. Шредингер и англичанин П. Дирак.

Квантовая механика имеет очень сложный математический аппарат, поэтому сейчас нам важны лишь те следствия квантово-механической теории, которые помогут нам разобраться в вопросах строения атома и молекулы, валентности элементов и т.п. С этой точки зрения, наиболее важным следствием из квантовой механики является то, что вся совокупность сложных движений электрона в атоме описывается пятью квантовыми числами: главным n, побочным I, магнитным спиновым s и проекцией спина Что же представляют собой квантовые числа?

Квантовые числа электронов.

Главное квантовое число n определяет общую энергию электрона на данной орбитали. Оно может принимать любые целые значения, начиная с единицы ). Под главным квантовым числом, равным подразумевают, что электрону сообщена энергия, достаточная для его полного отделения от ядра (ионизация атома).

Кроме того, оказывается, что в пределах определенных уровней энергии электроны могут отличаться своими энергетическими подуровнями. Существование различий в энергетическом состоянии электронов, принадлежащих к различным подуровням данного энергетического уровня, отражается побочным (иногда его называют орбитальным) квантовым числом l. Это квантовое число может принимать целочисленные значения от 0 до . Обычно численные значения l принято обозначать следующими буквенными символами:

В этом случае говорят о -состояниях электронов, или о -орбиталях.

Орбиталь - совокупность положений электрона в атоме, т.е. область пространства, в которой наиболее вероятно нахождение электрона.

Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, определяет форму электронного облака, а также орбитальный момент p - момент импульса электрона при его вращении вокруг ядра (отсюда и второе название этого квантового числа - орбитальное)

Таким образом, электрон, обладая свойствами частицы и волны, с наибольшей вероятностью движется вокруг ядра, образуя электронное облако, форма которого в S-, р-, d-, g-состояниях различна.

Еще раз подчеркнем, что форма электронного облака зависит от значения побочного квантового числа l.

Так, если (-орбиталь), то электронное облако имеет сферическую форму (шаровидную симметрию) и не обладает направленностью в пространстве (рис. 2.1).

Для полного объяснения всех свойств атома в 1925 г. была выдвинута гипотеза о наличии у электрона так называемого спина (сначала в самом простом приближении - для наглядности - считалось, что это явление аналогично вращению Земли вокруг своей оси при движении ее по орбите вокруг Солнца). Спин - это чисто квантовое свойство электрона, не имеющее классических аналогов. Строго говоря, спин - это собственный момент импульса электрона, не связанный с движением в пространстве. Для всех электронов абсолютное значение спина всегда равно Проекция спина на ось r (магнитное спиновое число ) может иметь лишь два значения: или .

Поскольку спин электрона s является величиной постоянной, его обычно не включают в набор квантовых чисел, характеризующих движение электрона в атоме, и говорят о четырех квантовых числах.

До конца 19 столетия большинство учёных представляло атом как неразложимую и неделимую частицу элемента – "конечный узел" материи. Считалось также, что атомы неизменны: атом данного элемента ни при каких условиях не может превращаться в атом какого – либо другого элемента.

Конец 19 и начало 20 веков характеризуется новыми открытиями в физике и химии, изменившими взгляд на атом, как на неизменимую частицу, свидетельствовавшими о сложном составе атомов и о возможности их взаимопревращений.

Сюда относится, прежде всего, открытие электрона английским физиком Томсоном в 1897 г., открытие и изучение радиоактивности в конце 90 – х годов 19 в. А. Беккерелем, Марией и Пьером Кюри, Э. Резерфордом.

Примерно в начале ХХ в. исследования ряда явлений (излучений раскалённых тел, фотоэффект, атомные спектры) привели к выводу, что энергия распространяется и передаётся, поглощается и испускается не непрерывно, а дискретно, отдельными порциями – квантами. Энергия системы микрочастиц также может принимать только определённые значения, которые являются кратными числами квантов.

Предположение о квантовой энергии впервые было высказано М. Планком (1900). Энергия кванта Е пропорциональна частоте излучения ν:

где h – постоянная Планка (6,626 10 -34 Дж×с), ν=, с – скорость света, l – длина волны.

В 1905 г. А. Эйнштейн предсказал, что любое излучение представляет собой поток квантов энергии, называемых фотонами. Из теории Эйнштейна следует, что свет имеет двойственную природу.

В 1911 г. Резерфорд предложил ядерную планетарную модель атома, состоящего из тяжёлого ядра, вокруг которого двигаются по орбитали электроны, подобно планетам солнечной системы. Однако, как показывает теория электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро.

Датский учёный Н. Бор, используя модель Резерфорда и теорию Планка, предложил первую квантовую модель (1913г.) строения атома водорода, согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешённым орбитам, на которых электрон обладает определёнными энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде квантов. Теория Бора позволила рассчитать энергию электронов, значения квантов энергии, испускаемых при переходе электрона с одного уровня на другой. Она не только объяснила физическую природу атомных спектров как результат перехода электронов с одних стационарных орбит на другие, но и впервые позволила рассчитывать спектры. Расчёт спектра простейшего атома – атома водорода, выполненный Бором, дал блестящие результаты: вычисленное положение спектральных линий в видимой части спектра совпало с их действительным местоположением в спектре. Но теория Бора не смогла объяснить поведение электрона в магнитном поле и все атомные спектральные линии, оказалась непригодной для многоэлектронных атомов. Возникла необходимость в новой модели атома, основанной на открытиях в микромире.


2.3. Квантово – механическая модель атома водорода. Исходные представления квантовой механики

В 1924г. Луи де Бройль (Франция) выдвинул предположение, что электрон, как и другие микрочастицы, характеризуется корпускулярно – волновым дуализмом. Де Бройль предложил уравнение, связывающее длину волны λ электрона или любой другой частицы с массой m и скоростью v:

Волны частиц материи де Бройль назвал материальными волнами. Они свойственны всем частицам или телам, но, как следует из уравнения, для макротел длина волны настолько мала, что в настоящее время не может быть обнаружена. Так, для тела с массой 1000 кг, двигающегося со скоростью 108 км/ч (30 м/с), λ=2,21 10 -38 м.

Гипотеза де Бройля была экспериментально подтверждена обнаружением дифракционного и интерференционного эффектов потока электронов. В настоящее время дифракция потоков электронов, нейтронов, протонов широко используется для изучения структуры веществ.

В 1927г. В. Гейзенберг (Германия) постулировал принцип неопределённости, согласно которому положение и импульс движения субатомной частицы (микрочастицы) принципиально невозможно определить в любой момент времени с абсолютной точностью. В каждый момент времени можно определить только лишь одно из этих свойств. Э. Шредингер (Австрия) в 1926г. вывел математическое описание поведения электрона в атоме. Сущность его заключается в том, что движение электронов в атоме описывается волновым уравнением, а определение местоположения электрона производится по вероятностным принципам. Уравнение Шредингера, являющееся основой современной квантово – механической теории строения атома, имеет вид (в простейшем случае):

Работы Планка, Эйнштейна, Бора, де Бройля, Гейзенберга, Шредингера заложили основу квантовой механики, изучающей движение и взаимодействие микрочастиц. Она основывается на представлении о квантовой энергии, волновом характере движения микрочастиц и вероятностном (статистическом) методе описания микрообъектов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

РЕФЕРАТ
Тема реферата: «Эволюция представлений о строении ядра атома»
ВЫПОЛНИЛ: СТ. ГР. БТЭ 13-01 А.А.АБДРАХМАНОВ
ПРОВЕРИЛ: ПРЕПОДАВАТЕЛЬ А.А.Е.КУРАМШИНА
УФА 2014
Введение
Основная часть
Постулаты Бора
Строение атомного ядра
Опыты Резерфорда
Заключение

Введение

Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся электроны. Атомы очень малы - их размеры порядка 10- 10 -10- 9 м, а размеры ядра еще примерно в 100 000 раз меньше (10- 15 -10- 14 м). Поэтому атомы можно «увидеть» только косвенным путем, на изображении с очень большим увеличением (например, с помощью автоэлектронного проектора). Но и в этом случае атомы не удается рассмотреть в деталях. Наши знания об их внутреннем устройстве основаны на огромном количестве экспериментальных данных, которые косвенно, но убедительно свидетельствуют в пользу сказанного выше.

Представления о строении атома радикально изменились в 20 в. под влиянием новых теоретических идей и экспериментальных данных. В описании внутреннего строения атомного ядра до сих пор остаются нерешенные вопросы, которые служат предметом интенсивных исследований. В следующих разделах излагается история развития представлений о строении атома как целого; строению ядра посвящена отдельная статья (АТОМНОГО ЯДРА СТРОЕНИЕ), поскольку эти представления развивались в значительной степени независимо. Энергия, необходимая для исследования внешних оболочек атома, относительно невелика, порядка тепловой или химической энергии. По этой причине электроны были экспериментально обнаружены задолго до открытия ядра.

Ядро же при его малых размерах очень сильно связано, так что разрушить и исследовать его можно только с помощью сил, в миллионы раз более интенсивных, нежели силы, действующие между атомами. Быстрый прогресс в понимании внутренней структуры ядра начался лишь с появлением ускорителей частиц. Именно это огромное различие размеров и энергии связи позволяет рассматривать структуру атома в целом отдельно от структуры ядра.

Чтобы составить представление о размерах атома и незаполненности занимаемого им пространства, рассмотрим атомы, составляющие каплю воды диаметром 1 мм. Если мысленно увеличить эту каплю до размеров Земли, то атомы водорода и кислорода, входящие в молекулу воды, будут иметь в поперечнике 1-2 м. Основная же часть массы каждого атома сосредоточена в его ядре, поперечник которого при этом составил всего 0,01 мм.

Основная часть

Эволюция представлений о строении атомов

Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, позволившей объяснить атомные системы, были сформированы новые представления о свойствах микрочастиц, которые описываются квантовой механикой.

Представление об атомах как неделимых мельчайших частицах веществ, как уже отмечалось выше, возникло еще в античные времена (Демокрит, Эпикур, Лукреций). В средние века учение об атомах, будучи материалистическим, не получило признания. К началу XVIII в. атомистическая теория приобретает все большую популярность. К этому времени работами французского химика А. Лавуазье (1743-1794), великого русского ученого М.В. Ломоносова и английского химика и физика Д. Дальтона (1766-1844) была доказана реальность существования атомов. Однако в это время вопрос о внутреннем строении атомов даже не возникал, так как атомы считались неделимыми.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Д.И. Менделеев, разработавший в 1869 г. периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине XIX в. было экспериментально доказано, что электрон является одной из основных частей любого вещества. Эти выводы, а также многочисленные экспериментальные данные привели к тому, что в начале XX в. серьезно встал вопрос о строении атома.

Существование закономерной связи между всеми химическими элементами, ярко выраженное в периодической системе Менделеева, наталкивает на мысль о том, что в основе строения всех атомов лежит общее свойство: все они находятся в близком родстве друг с другом.

Однако до конца XIX в. в химии господствовало метафизическое убеждение, что атом есть наименьшая частица простого вещества, последний предел делимости материи. При всех химических превращениях разрушаются и вновь создаются только молекулы, атомы же остаются неизменными и не могут дробиться на более мелкие части.

Различные предположения о строении атома долгое время не подтверждались какими-либо экспериментальными данными. Лишь в конце XIX в. были сделаны открытия, показавшие сложность строения атома и возможность превращения при определенных условиях одних атомов в другие. На основе этих открытий начало быстро развиваться учение о строении атома.

Первые косвенные подтверждения о сложной структуре атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Изучение свойств этих лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, близкой к скорости света. Особыми приемами удалось определить массу катодных частиц и величину их заряда, выяснить, что они не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов и превращены в электронейтральные частицы: электрический заряд составляет сущность их природы. Эти частицы, получившие название электронов, были открыты в 1897 г. английским физиком Дж. Томсоном.

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Томсон предложил первую модель атома, представив атом как сгусток материи, обладающий положительным электрическим зарядом, в который вкраплено столько электронов, что превращает его в электрически нейтральное образование. В этой модели предполагалось, что под влиянием внешних воздействий электроны могли совершать колебания, т. е. двигаться ускоренно. Казалось бы, это позволяло ответить на вопросы об излучении света атомами вещества и гамма-лучей атомами радиоактивных веществ.

Положительно заряженных частиц внутри атома модель атома Томсона не предполагала. Но как же тогда объяснить испускание положительно заряженных альфа-частиц радиоактивными веществами? Модель атома Томсона не давала ответа и на некоторые другие вопросы.

В 1911 г. английским физиком Э. Резерфордом при исследовании движения альфа-частиц в газах и других веществах была обнаружена положительно заряженная часть атома. Дальнейшие более тщательные исследования показали, что при прохождении пучка параллельных лучей сквозь слои газа или тонкую металлическую пластинку выходят уже не параллельные лучи, а несколько расходящиеся: происходит рассеяние альфа-частиц, т. е. отклонение их от первоначального пути. Углы отклонения невелики, но всегда имеется небольшое число частиц (примерно одна из нескольких тысяч), которые отклоняются очень сильно. Некоторые частицы отбрасываются назад, как если бы на пути встретилась непроницаемая преграда. Это не электроны - их масса гораздо меньше массы альфа-частиц. Отклонение может происходить при столкновении с положительными частицами, масса которых того же порядка, что и масса альфа-частиц. Исходя из этих соображений, Резерфорд предложил следующую схему строения атома.

В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Поскольку масса электрона ничтожна мала, то почти вся масса атома сосредоточена в его ядре. На долю ядра и электронов, число которых сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой.

Предложенная Резерфордом схема строения атома или, как обыкновенно говорят, планетарная модель атома, легко объясняет явления отклонения альфа-частиц. Действительно, размеры ядра и электронов чрезвычайно малы по сравнению с размерами всего атома, которые определяются орбитами наиболее удаленных от ядра электронов, поэтому большинство альфа-частиц пролетает через атомы без заметного отклонения. Только в тех случаях, когда альфа-частица очень близко подходит к ядру, электрическое отталкивание вызывает резкое отклонение ее от первоначального пути. Таким образом, изучение рассеяния альфа-частиц положило начало ядерной теории атома.

Постулаты Бора

Планетарная модель атома позволила объяснить результаты опытов по рассеянию альфа-частиц вещества, однако возникли принципиальные трудности при обосновании устойчивости атомов.

Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. Нильсом Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил ядерную модель Резерфорда. Он предположил, что электроны движутся вокруг ядра по круговым орбитам. Движение по окружности даже с постоянной скоростью обладает ускорением. Такое ускоренное движение заряда эквивалентно переменному току, который создает в пространстве переменное электромагнитное поле. На создание этого поля расходуется энергия. Энергия поля может создаваться за счет энергии кулоновского взаимодействия электрона с ядром. В результате электрон должен двигаться по спирали и упасть на ядро. Однако опыт показывает, что атомы - очень устойчивые образования. Отсюда следует вывод, что результаты классической электродинамики, основанной на уравнениях Максвелла, неприменимы к внутриатомным процессам. Необходимо найти новые закономерности. В основу своей теории атома Бор положил следующие постулаты.

Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.

Этот постулат находится в противоречии с классической теорией. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса.

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

равной разности энергий соответствующих стационарных состояний (Еn и Еm - соответственно энергии стационарных состояний атома до и после излучения/поглощения).

Переходу электрона со стационарной орбиты под номером m на стационарную орбиту под номером n соответствует переход атома из состояния с энергией Еm в состояние с энергией Еn (рис.1).

Рис. 1 К пояснению постулатов Бора

ри Еn > Еm происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Еn < Еm - его поглощение (переход атома в состояние с большей энергией, т. е, переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот

квантовых переходов и определяет линейчатый спектр атома.

Теория Бора блестяще объяснила экспериментально наблюдаемый линейчатый спектр водорода.

Успехи теории атома водорода были получены ценой отказа от фундаментальных положений классической механики, которая на протяжении более 200 лет остается безусловно справедливой. Поэтому большое значение имело прямое экспериментальное доказательство справедливости постулатов Бора, особенно первого - о существовании стационарных состояний. Второй постулат можно рассматривать как следствие закона сохранения энергии и гипотезы о существовании фотонов.

Немецкие физики Д. Франк и Г. Герц, изучая методом задерживающего потенциала столкновение электронов с атомами газов (1913г.), экспериментально подтвердили существование стационарных состояний и дискретность значений энергии атомов.

Несмотря на несомненный успех концепции Бора применительно к атому водорода, для которого оказалось возможным построить количественную теорию спектра, создать подобную теорию для следующего за водородом атома гелия на основе представлений Бора не удалось. Относительно атома гелия и более сложных атомов теория Бора позволила делать лишь качественные (хотя и очень важные) заключения. Представление об определенных орбитах, по которым движется электрон в атоме Бора, оказалось весьма условным. На самом деле движение электронов в атоме имеет мало общего с движением планет по орбитам.

В настоящее время с помощью квантовой механики можно ответить на многие вопросы, касающиеся строения и свойств атомов любых элементов.

атом ядро бор менделеев

Строение атомного ядра

Нуклонный уровень

Примерно через 20 лет после того, как Резерфорд «разглядел» в недрах атома его ядро, был открыт нейтрон - частица по всем своим свойствам такая же, как ядро атома водорода - протон, но только без электрического заряда. Нейтрон оказался чрезвычайно удобен для зондирования внутренности ядер. Поскольку он электрически нейтрален, электрическое поле ядра не отталкивает его - соответственно, даже медленные нейтроны могут беспрепятственно приблизиться к ядру на расстояния, при которых начинают проявляться ядерные силы. После открытия нейтрона физика микромира двинулась вперед семимильными шагами.

Вскоре после обнаружения нейтрона два физика-теоретика - немецкий Вернер Гейзенберг и советский Дмитрий Иваненко - выдвинули гипотезу о том, что атомное ядро состоит из нейтронов и протонов. На ней базируется современное представление о строении ядра.

Протоны и нейтроны объединяются словом нуклон. Протоны - это элементарные частицы, которые являются ядрами атомов легчайшего химического элемента - водорода. Число протонов в ядре равно порядковому номеру элемента в таблице Менделеева и обозначается Z (число нейтронов - N). Протон имеет положительный электрический заряд, по абсолютному значению равный элементарному электрическому заряду. Он примерно в 1836 раз тяжелее электрона. Протон состоит из двух и-кварков с зарядом Q = + 2/3 и одного d-кварка с Q = - 1/3, связанных глюонным полем. Он имеет конечные размеры порядка 10-15 м, хотя его нельзя представить как твердый шарик, он скорее напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.

Электрический заряд нейтрона равен 0, масса его - примерно 940 МэВ. Нейтрон состоит из одного u-кварка и двух d-кварков. Эта частица устойчива только в составе стабильных атомных ядер, свободный нейтрон распадается на электрон, протон и электронное антинейтрино. Период полураспада нейтрона (время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. В веществе в свободном виде нейтроны существуют еще меньше времени вследствие сильного поглощения их ядрами. Как и протон, нейтрон участвует во всех видах взаимодействий, в том числе в электромагнитном: при общей нейтральности вследствие сложного внутреннего строения в нем существуют электрические токи.

В ядре нуклоны связаны силами особого рода - ядерными. Одна из характерных их особенностей - короткодействие: на расстояниях порядка 10-15 м и меньше они превышают любые другие силы, вследствие чего нуклоны не разлетаются под действием электростатического отталкивания одноименно заряженных протонов. При больших расстояниях ядерные силы очень быстро уменьшаются до нуля.

Механизм действия ядерных сил основан на том же принципе, что и электромагнитных - на обмене взаимодействующих объектов виртуальными частицами.

Виртуальные частицы в квантовой теории - это частицы, которые имеют такие же квантовые числа (спин, электрический и барионный заряды и др.), как и соответствующие реальные частицы, но для которых не выполняется обычная связь между энергией, импульсом и массой.

Опыты Резерфорда

В магнитном поле поток радиоактивного излучения распадается на 3 составляющих:альфа- лучи, бета-лучи и гамма-лучи.

Явление радиоактивности свидетельствовало о сложном строении атома

Опыт Резерфорда по рассеянию альфа-частиц

1911г. - Э. Резерфорд ставит опыт по рассеянию альфа-частиц. Пучок aльфа-частиц пропускался через тонкую золотую фольгу.

Золото было выбрано как очень пластичный материал, из которого можно получить фольгу толщиной практически в один атомный слой.

Некоторые альфа-частицы проходили сквозь фольгу, образуя на экране размытое пятно, а следы от других альфа-частиц были зафиксированы на боковых экранах.

Опыт показал, что положительный заряд атома сконцентрирован в очень малом объеме - ядре, а между ядрами атомов существуют большие промежутки.

Резерфорд показал, что модель Томсона находится в противоречии с его опытами.

Заключение

В заключении, приходим к выводу, что концепции Резерфорда -- Бора уже больше частичек абсолютной истины, хотя дальнейшее развитие физики обнаружило и в этой концепции немало погрешностей. Еще большая часть абсолютно верного знания содержится в квантово-механической теории атома.

Открытие сложной структуры атома стало крупнейшим событием в физике, поскольку оказались опровергнутыми представления классической физики об атомах как твердых и неделимых структурных единицах вещества

Список использованных источников

1. Физика для всех / Купер Л.- «Мир»1974 г.

2. Физики / Храмов Ю.А.- «Наука» 1983 г.

3. Физика -9,11 / Перышкин А.В.- «Дрофа» 2004 г.

4. П.С. Кудрявцев. «Курс истории физики» М.1982.

5. М.П. Бронштейн. «Атомы и электроны» М. 1980.

6. Интернет-ресурсы.

7. http://www.rcio.rsu.ru/.

Размещено на Allbest.ru

...

Подобные документы

    Анализ развития идей атомизма в истории науки. Роль элементарных частиц и физического вакуума в строении атома. Суть современной теории атомизма. Анализ квантовой модели атома. Введение понятия "молекула" Пьером Гассенди. Открытие эффекта Комптона.

    контрольная работа , добавлен 15.01.2013

    Исследование концепции динамической структуры атома в пространстве. Изучение структуры атома и атомного ядра. Описания динамики движения тел в реальном пространстве потенциальных сфер. Анализ спирального движения квантовых частиц в свободном пространстве.

    реферат , добавлен 29.05.2013

    Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.

    курсовая работа , добавлен 25.04.2015

    История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.

    реферат , добавлен 08.05.2003

    Модели строения атома. Формы атомных орбиталей. Энергетические уровни атома. Атомная орбиталь как область вокруг ядра атома, в которой наиболее вероятно нахождение электрона. Понятие протона, нейтрона и электрона. Суть планетарной модели строения атома.

    презентация , добавлен 12.09.2013

    Складові частини атома: ядро, протони, нейтрони та електрони. Планетарна модель атома або модель Резерфорда. Керована та некерована ланцюгова ядерна реакція. Поняття ядерного вибуху як процесу вивільнення великої кількості теплової і променевої енергії.

    презентация , добавлен 21.05.2012

    Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.

    реферат , добавлен 05.01.2009

    История зарождения и развития атомистической теории. Представления Платона и Аристотеля о непрерывности материи. Корпускулярно-кинетическая теория тепла, открытие радиоактивности. Ранняя планетарная модель атома Нагаоки. Определение заряда электрона.

    презентация , добавлен 28.08.2013

    Эволюция представлений о строении атомов на примере моделей Эрнеста Резерфорда и Нильса Бора. Стационарные орбиты и энергетические уровни. Объяснение происхождения линейчатых спектров излучения и поглощения. Достоинства и недостатки теории Н. Бора.

    реферат , добавлен 19.11.2014

    Этапы исследований строения атома учеными Томсоном, Резерфордом, Бором. Схемы их опытов и интерпретация результатов. Планетарная модель атома Резерфорда. Квантовые постулаты Бора. Схемы перехода из стационарного состояния в возбужденное и наоборот.

Как устроен окружающий мир? Этот вопрос интересовал древних мудрецов, философов средневековья, учёных других эпох. Пытаясь дать объяснение наблюдаемым явлениям и фактам, они строили мысленные образы строения вещества. Однако, открытие новых явлений, нередко вызывало необходимость создания других, более совершенных, моделей.

Рассмотрим этот процесс на примере развития теории строения атома.

Эволюция представлений о строении атома

Понятие атома и основные принципы атомистической теории впервые были сформулированы в V-VIII до нашей эры выдающимися представителями Демокритом, Левкиппом, Эпикуром. Спустя несколько столетий они нашли поэтическое отражение в поэме римского философа и поэта Лукреция Кара «О природе вещей».

Открытие электрона

В средние века атомистические воззрения философов древности почти не имели сторонников. И лишь в XVII веке, когда химия выделилась в отдельную науку, многие учёные обратили свои взоры на атомизм.

Главными строительными деталями ядра являются положительные протоны и, не имеющие электрического заряда, нейтроны. Исключение составляет только водород. Его ядро состоит из одного единственного протона. Для обозначения атомных ядер используют запись вида:

  • А - атомная масса — сумма протонов и нейтронов (нуклонов ядра);
  • Z - номер элемента в таблице Менделеева, равный числу протонов в ядре.

Ядра атомов очень прочны, что объясняется действием особых внутриядерных сил. Именно эти силы удерживают вместе нуклоны ядра. Их главная особенность - короткодействующий характер. Т.е. они действуют лишь в пределах ядра.

Всего сейчас науке известны 118 видов атомов. Объединяясь в молекулы, они образуют всё многообразие веществ в природе.

Спустя столетие

Современная физика базируется на планетарной модели атома, дополненной впоследствии постулатами Бора и сведениями об атомном ядре. Атом невидим для невооруженного глаза, но «подсмотреть» за ним всё же можно в специальные виды микроскопов - электронный, атомный и др.

Далёкие спутники атомных ядер - электроны уже давно не считают просто отрицательно заряженными частицами. Всё гораздо мудрее и интереснее. Совокупность электронов в атоме называют «электронным облаком». Скорость его вращения и удаленность от ядра подчиняется определенным законам. Но особенно интересна особенность электронов - иметь массу и заряд как частица и в то же время проявлять волновые свойства. Эта двойственность носит название корпускулярно-волнового дуализма.

Чем совершеннее методы познания, тем глубже проникает человеческий разум в строение вещества. К настоящему времени установлено, что протоны и нейтроны имеют сложную структуру, состоящую из элементарных частиц - кварков.

Если это сообщение тебе пригодилось, буда рада видеть тебя

До конца 19 века большинство учёных представляло атом как неразложимую и неделимую частицу элемента – "конечный узел" материи. Считалось также, что атомы неизменны: атом данного элемента ни при каких условиях не может превращаться в атом какого – либо другого элемента.

Конец 19 и начало 20 веков характеризуется новыми открытиями в физике и химии, изменившими взгляд на атом, как на неизменимую частицу, свидетельствовавшими о сложном составе атомов и о возможности их взаимопревращений.

Сюда относится, прежде всего, открытие электрона английским физиком Томсоном в 1897 г., открытие и изучение радиоактивности в конце 90 – х годов 19 в. А. Беккерелем, Марией и Пьером Кюри, Э. Резерфордом.

Примерно в начале ХХ в. исследования ряда явлений (излучений раскалённых тел, фотоэффект, атомные спектры) привели к выводу, что энергия распространяется и передаётся, поглощается и испускается не непрерывно, а дискретно, отдельными порциями – квантами. Энергия системы микрочастиц также может принимать только определённые значения, которые являются кратными числами квантов.

Предположение о квантовой энергии впервые было высказано М. Планком (1900). Энергия кванта Е пропорциональна частоте излучения ν:

где h– постоянная Планка (6,626 10 -34 Джс), ν=, с – скорость света,– длина волны.

В 1905 г. А. Эйнштейн предсказал, что любое излучение представляет собой поток квантов энергии, называемых фотонами. Из теории Эйнштейна следует, что свет имеет двойственную природу.

В 1911 г. Резерфорд предложил ядерную планетарную модель атома, состоящего из тяжёлого ядра, вокруг которого двигаются по орбитали электроны, подобно планетам солнечной системы. Однако, как показывает теория электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро.

Датский учёный Н. Бор, используя модель Резерфорда и теорию Планка, предложил первую квантовую модель (1913г.) строения атома водорода, согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешённым орбитам, на которых электрон обладает определёнными энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде квантов. Теория Бора позволила рассчитать энергию электронов, значения квантов энергии, испускаемых при переходе электрона с одного уровня на другой. Она не только объяснила физическую природу атомных спектров как результат перехода электронов с одних стационарных орбит на другие, но и впервые позволила рассчитывать спектры. Расчёт спектра простейшего атома – атома водорода, выполненный Бором, дал блестящие результаты: вычисленное положение спектральных линий в видимой части спектра совпало с их действительным местоположением в спектре. Но теория Бора не смогла объяснить поведение электрона в магнитном поле и все атомные спектральные линии, оказалась непригодной для многоэлектронных атомов. Возникла необходимость в новой модели атома, основанной на открытиях в микромире.

2.3. Квантово – механическая модель атома водорода. Исходные представления квантовой механики

В 1924г. Луи де Бройль (Франция) выдвинул предположение, что электрон, как и другие микрочастицы, характеризуется корпускулярно – волновым дуализмом. Де Бройль предложил уравнение, связывающее длину волны (λ) электрона или любой другой частицы с массой (m) и скоростью (v):

Волны частиц материи де Бройль назвал материальными волнами. Они свойственны всем частицам или телам, но, как следует из уравнения, для макротел длина волны настолько мала, что в настоящее время не может быть обнаружена. Так, для тела с массой 1000 кг, двигающегося со скоростью 108 км/ч (30 м/с), λ=2,21 10 -38 м.

Гипотеза де Бройля была экспериментально подтверждена обнаружением дифракционного и интерференционного эффектов потока электронов. В настоящее время дифракция потоков электронов, нейтронов, протонов широко используется для изучения структуры веществ.

В 1927 г. В. Гейзенберг (Германия) постулировал принцип неопределённости, согласно которому положение и импульс движения субатомной частицы (микрочастицы) принципиально невозможно определить в любой момент времени с абсолютной точностью. В каждый момент времени можно определить только лишь одно из этих свойств. Э. Шредингер (Австрия) в 1926 г. вывел математическое описание поведения электрона в атоме. Сущность его заключается в том, что движение электронов в атоме описывается волновым уравнением, а определение местоположения электрона производится по вероятностным принципам. Уравнение Шредингера, являющееся основой современной квантово–механической теории строения атома, имеет вид (в простейшем случае):

где h– постоянная Планка;m– масса частицы;U– потенциальная энергия; Е – полная энергия;x,y,z– координаты; ψ – волновая функция.

Для характеристики состояния электрона особо важное значение имеет волновая функция ψ. Определённый физический смысл имеет её квадрат – ψ 2 . Величина ψ 2 dv выражает вероятность нахождения электрона в объёме пространства dv, окружающего атомное ядро. В настоящее время уравнение имеет точное решение только для водорода и водородоподобных частиц Не + , Li 2 + , т.е. для одноэлектронных частиц. Решение этого уравнения –задача сложная и рассмотрение её выходит за рамки данного курса.

Работы Планка, Эйнштейна, Бора, де Бройля, Гейзенберга, Шредингера заложили основу квантовой механики, изучающей движение и взаимодействие микрочастиц. Она основывается на представлении о квантовой энергии, волновом характере движения микрочастиц и вероятностном (статистическом) методе описания микрообъектов.

Рассказать друзьям